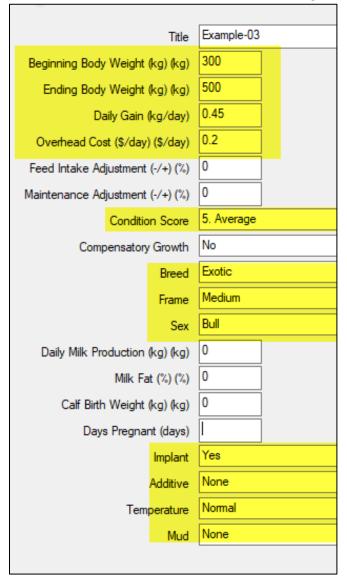
Class Exercise 02

Least Cost Breeding (LC-B): Adult Bull

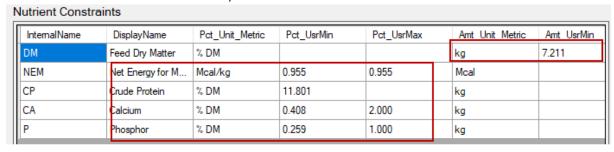

Attendees Group Number:

Attendees Names (Last Name, First Name, Initials)

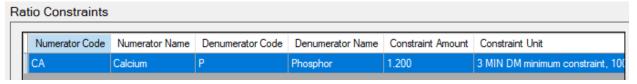
- •
- •
- •

INPUT

- 1. From the main menu select the Least Cost Breeding (LC-B).
- 2. In the Animal Information scree, enter the following information:



This is an Exotic medium frame 300-kg adult bull, with average condition score of 5, and with average daily gain of 0.45 kg/day, which will eventually produce an ending weight of 500 kg. The overhead cost is 0.20 per day. We use implant but no feed additives. The temperature is normal and there is no mud.


3. Goto Feeds screen and add the following feeds and then go to the Ration screen and enter the following prices:

Library	Feed Number	Feed Name	Feed Price
0	18	ALFALFA middlings bloom	137.79
0	30	ALMOND hulls 15 percent Crude Fiber	82.67
0	154	BUCKWHEAT grain	110.23
0	162	CALCIUM phosphate di	529.1
0	231	CORN grain flaked	132.28
0	267	FAT animal Hydroponic	264.55
0	383	MOLASSES cane	88.18
0	399	OAT hay dough stage	110.23
0	430	OYSTERSHELL ground	110.23
0	563	RICE hulls	0
0	675	UREA 45% nitrogen	264.55
0	692	WHEAT grain Soft red winter (SRW)	137.78

4. Go to the Nutrient Constraints screen, and recalculate nutrient constraints

- 5. Do not add any constraints for feeds and feed groups.
- 6. Go to the Ratio constraints and confirm that it is set as shown below:

7. Go to Reports screen and generate the report.

OUTPUT

Using the information in the report fill out the following tables:

Table 02: Methane Emission:

Item	Value
Methane Emission in MJ per day per head (MJ/d)	
Methane Emission in Mcal per day per head (Mcal/d)	
Methane Emission (kg/day/day)	
CO2 Equivalent Emission (kg/day/head)	
Methane Emission in gram per kg of dry matter intake (g/kg)	
Methane Conversion Rate (%)	

Nutrients Requirements:

Nutrient	Description	Unit	Supplied by	NRC	Meets Minimum NRC
			Ration	Min	Requirements?
			Dry Matter		
DM	Intake	Kg			
NEM	Energy	Mcal*			
СР	Protein	Kg*			
CA	Mineral	%DM			
Р	Mineral	%DM			

Ration composition:

Feed Number	Feed Name	Kg As Fed	Price/day
18	ALFALFA middlings bloom		
30	ALMOND hulls 15 percent Crude Fiber		
154	BUCKWHEAT grain		
162	CALCIUM phosphate di		
231	CORN grain flaked		
267	FAT animal Hydroponic		
383	MOLASSES cane		
399	OAT hay dough stage		
430	OYSTERSHELL ground		
563	RICE hulls		
675	UREA 45% nitrogen		
692	WHEAT grain Soft red winter (SRW)		
	TOTAL		

References

Citation for Software:

Least Cost and Ration Analysis Program for Beef Cattle for Nigeria Users' Manual. (2023). Global Engagement Office, CA&ES Dean's Office, College of Agricultural and Environmental Sciences, University of California, Davis. https://geosoftware.faculty.ucdavis.edu/users_manuals/

Citation for Methane Equation:

Moraes, L. E., Strathe, A. B., Fadel, J. G., Casper, D. P., & Kebreab, E. (2014). Prediction of enteric methane emissions from cattle. Global Change Biology, 20(7), 2140-2148.

https://doi.org/10.1111/gcb.12471

Nutrient Amounts

NEM Amount (Mcal) = NEM Concentration (Mcal/kg) * DMI (kg) CP Amount (kg) = CP Concentration (%) * DMI (kg) / 100